Virtual Localization in Wireless Sensor Networks for Robust Geographic Routing

Y. Ahmet Şekercioğlu

Department of Electrical and Computer Systems Engineering Faculty of Engineering Monash University

November 2011

Outline

- Introduction
 - Wireless Sensor Networks
 - Geographic Routing

2 Geographic Routing

- Greedy
- Two-hop Greedy
- Void Avoidance

3 Virtual Localisation

- The Algorithm
- Implementation

4 Simulation

- Network Topologies
- 5 Virtual Localization in WSNs
 - Virtual Localization Algorithm
 - Packet Radio Testbed Results

Wireless Sensor Networks

- Networks of large numbers of sensor nodes
- Mesh networks nodes participate in routing
- Nodes are cheap, resource-limited
 - Battery-powered must conserve energy
 - Limited computational power and memory
 - ▶ Wireless medium is *shared* limited communication between nodes
- Routing must be *scalable* independent of network size

Geographic Routing

- Uses *locations* to address nodes
- Routing tables no longer required
- Only local information is used
 - Completely scalable
- Requires node locations to be known

Geographic Routing Schemes

- Greedy routing
 - Simple and efficient
 - Packets do not always reach destination
- Face routing
 - Guaranteed packet delivery for planar networks
 - Not very efficient long routing paths
- Performance evaluated using two metrics
 - Reachability proportion of packets that are delivered
 - Stretch length of discovered path relative to shortest path

Greedy Routing

• Simple rule — forward packet to neighbour *closest* to destination

- Paths are not always optimal
- Packets can get stuck in voids

Two-hop Greedy Routing

Choose closest node from the 2-hop neighbourhood
If choice is a 2-neighbour, send via a 1-neighbour

- Improves performance
- Requires 2-hop information

Void Avoidance

- Used for recovery when greedy routing fails
- Nodes marked as voids when packet would have been dropped
- Other nodes ignore void nodes when choosing closest neighbour

- Cannot guarantee delivery, but always improves reachability
- Void list is stored in the packet, which increases overhead slightly

Virtual Localisation

- Enables geographic routing functionality without location information
- Nodes "place" themselves in a virtual coordinate system
 - Routing is performed over the virtual locations
- Locations generated using local connectivity information
 - Nodes are attracted to their neighbours
 - Nodes are repelled from their 2-neighbours
- Equivalent to minimising an energy function:

$$E(a) = k_a \sum_{b \in N} \|a - b\|^2 + k_r \sum_{b \in M} \frac{1}{1 + \|a - b\|}$$

- 1- and 2-neighbours' virtual locations obtained from beacons
 - Each node sends broadcast beacons containing its neighbours' locations
- Very scalable uses only local information

Packet Radio Network

- Initially implemented in a packet radio network
 - Part of a summer research project (2010–2011)
 - Basic virtual localisation in 3 dimensions
- Virtual locations mimicked network structure

Simulation of Algorithm

- Virtual localisation was implemented in OMNeT++
- Results were visualised in 3D using OpenGL
 - Allows direct comparison between physical and virtual locations

Virtual Localisation in Action — Simulation

Implementation

Simulation of Algorithm

- Virtual localisation was implemented in OMNeT++
- Results were visualised in 3D using OpenGL
 - Allows direct comparison between physical and virtual locations

Virtual Localisation in Action — Simulation virtloc video.flv

Topology Generation

- Unit-disk graph (UDG) model most commonly used
 - Nodes have a fixed transmission radius
 - Creates unrealistic uniformly dense topologies
- Topology generator with variable range was created
 - Transmission power and receive sensitivity is varied node to node
 - Results in large variation in the length of links

Summary

- Routing in wireless sensor networks must be simple and scalable
- Geographic routing is the best option for this purpose
 - It requires knowledge of node locations
 - Greedy routing simplest, good performance
 - Two-hop greedy better performance
 - Void avoidance much better reachability
- Virtual localisation constructs a virtual coordinate system
 - Location information not necessary
 - Algorithm is very scalable
 - Generated locations can be in almost any metric space
- Algorithms implemented in *OMNeT++* simulator
- Realistic topologies generated by varying range
- Results obtained for many configurations
 - Routing over virtual locations more robust to network irregularities
 - Void avoidance improves reachability at the expense of stretch

Greedy Routing in WSNs

- If the locations of nodes are known, *greedy routing* is considered as the best approach (in general).
- How can one discover the locations?

< A >

Physical Vs Virtual Locations in WSNs

Physical Locations

- Naïve solution: GPS
- 'Anchor' nodes (up to 20% of the total number of nodes)
- Radio distance-finding

Virtual Locations

- Location relative to other nodes
- Axes do not correspond to real directions
- Geometries may not correspond either
- Internally consistent
- Generally only useful for routing purposes

< 47 →

15/23

n-neighbours, Attraction and Repulsion Forces Spring Models

Forces and Potentials - Equations

• A node *i* attempts to minimize the total "potential energy" by iteratively recalculating its "position"

$$U_i = \sum_{j \in N} A_{ij} + \sum_{k \in N} R_{ik}$$

where

• A_{ij} is a springlike "attraction force" to 1-neighbours

$$A_{ij} = k_{att} \cdot d_{ij}^2 \quad ; \quad k_{att} = 1$$

and

R_{ik} is an electrostatic-like "repulsion force" from 2-neighbours (with a small offset to prevent infinities)

$$R_{ik} = k_{rep} \cdot \frac{1}{d_{ik} + 1}$$
; $k_{rep} = 8 \times 10^6$

< A >

Forces and Potentials - View in a 1D Universe

Where is the stable location for node C?

Forces and Potentials - View in a 2D Universe

Multiple Neighbours

Packet Radio Testbed: Physical Vs. Virtual Locations

Greedy Routing Over Physical Vs. Virtual Locations

Average Number of Hops to Sink

< (F) >

Greedy Routing Over Physical Vs. Virtual Locations

Source to Sink Reachability

